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Abstract. A composite system is a system formed out of different subsystems connected by 
interfaces. Any physical property of such a system can he described by an operator which 
can have a discrete matrix form or a continuous (e.g. differential) form. Some composite 
systems can even he formed of partly discrete and partly continuous subsystems. We present 
here a general unified theory enabling us to calculate the deformations of any composite 
system submitted to some action. It is then shown how this theory can he used for the 
calculation of eigenvectors related to the eigenvalues of a given operator. 

1. Introduction 

Let us define in a given &dimensional space D a composite system as a system formed 
out of N subsystems defined in subspaces D, (1 S i S N )  and bounded together by 
interface subspaces Mi E D,. The ensemble of all M ,  will be called the interface space M 
of the composite under consideration. Under such a general and abstract definition can 
enter any system and in particular any physical system such as composite materials or 
multimaterials. 

A general and unified interface response theory of discrete [l], continuous [2] 
and mixed [3] (partly continuous and partly discrete) composite systems was recently 
formulated. This theory gives general relations between the response function (also 
called the Green function) associated with a given operator and with a given composite 
system and the response function of a reference system out of which the composite can 
be built. We show here that similar general relations also exist between the deformations 
due to an applied action and the eigenvectors of the composite system and the cor- 
responding entities of the reference system. In what follows, we shall consider respect- 
ively discrete, continuous and mixed composite systems. The corresponding general 
results will be illustrated by specific examples in the subsequent paper [4]. 

t Permanent address: Surface Physics Division, Physics Institute, A Mickiewicz University, Matejki 48/49, 
6C-769 Poznan, Poland. 
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2. Discrete composite systems 

Consider a matrix operator 

h = E l - h  (1) 
defined for a composite system within a d-dimensional discrete space D. In equation (l), 
I is the unity matrix. Let us call / U )  the vector of the deformations of this system when it 
is submitted to an action IF) ,  such that 

hlu) = IF) in D 

or, equivalently, 

(U1 h = (FI in D (26) 
where we use in equation (2b) row vectors rather than column vectors as in equation 
(2a). When the action on the system is zero, then the diagonalisation of equations (2) 
provides the eigenvalues E and the corresponding eigenvectors I u ) .  However, the direct 
calculation from equation (2) of the deformation I U )  due to 1 F )  and that of the eigenvalues 
and eigenvectors can become a large numerical problem as h is in general a huge matrix 
for a composite system. 

We propose in what follows an alternative, and in general simpler, solution of this 
problem, using the response function g defined by 

gh = hg = I in D. (3) 
It was shown [ 11 that this response function can be calculated from knowledge of the 

response function G of a reference system corresponding to this composite system. This 
reference response function G is a block diagonal matrix, each independent block GI of 
which is formed out of either the elements G,, in D, of the response function Go, of the 
corresponding infinite subsystem (G,, is a truncated part of the infinite matrix Got) or the 
elements gs, in D, of the response function of the corresponding subsystem with ideally 
cleaved free surfaces. 

These response functions gs, and G,, are related by the following relations: 

g,, (1 + As, 1 = G,, in D ,  (4a) 

In these equations, ASi and A:, are the truncated parts within Di of, respectively, 

AOj = V";Goi (ja) 

Ao; = GoiVoj ( jb)  

and 

where Voi is the cleavage operator which creates, within the infinite subsystem i, two 
independent parts, one of which is in Di the elementary brick that we need to build the 
composite system, such that 

hoi = H,, + VOi in D,. (6) 

Hoi is the corresponding operator of the infinite system. 
Couple now all N such ideally cleaved subsystems by a coupling operator VI and 
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perturb the composite system by a perturbation V ,  such that 

h = h, + V I  + V ,  in D (7) 

where h, is a block diagonal matrix formed out of the relevant parts of the ho,. 

response function G are related [l] by the universal equations 
The response function g of the composite perturbed system and the reference 

g( l  + A)  = G in D (sa) 

(I + A')g = G in D (8b) 

A = A,  + ( V I  + V, )G in D (9a) 

and 

where the interface response operators A and A' are 

and 

A' = AS + G(VI + V , )  in D .  

A, and Ai are block diagonal matrices formed out of the A,, and ASi defined above. It is 
possible to use in G for some blocks the surface response function g,; of the bulk response 
function Goi; then the corresponding blocks A,; and A:, are zero in A, and Ai respectively. 

Note that the space M of all interfaces includes also the space in which the per- 
turbation V ,  is defined. 

The interface response operator A has non-zero elements only between a point of 
the interface space M and any other point of D .  It is useful then to define a rectangular 
matrix A(MD) and in the same manner A'(DM) and similar notation for all the other 
operators. Defining then within the interface space M ,  the square matrices 

A(MM) = I (MM) + A(MM) 

A'(MM) = I (MM) + A'(MM) 

g (DD)  = G(DD)  - G(DM)A-l(MM)A(MD) 

g (DD)  = G ( D D )  - A'(DM)A-'(MM)G(MD).  

(10a) 

(lob) 

(11a) 

( I lb)  

and 

enables us to obtain from equations (8) the following matrix equations: 

and 

When the response function g of the composite is known, its deformations can be 
obtained, using equation (2), from 

l 4 D ) )  = g ( D D ) I W ) )  (12a) 

( @ ) I  = ( W ) I g ( D D ) .  (12b) 

( 4 D ) l  = ( u ( D ) /  - (U(M)/A- ' (MM)A(MD) (13a) 

and 

Applying the same action on both sides of equations (11) then provides 
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or 

lu(D)) = I U ( D ) )  - A’(DM)A’-’(MM)/ U ( M ) )  (13b) 

are the deformations of the reference system. Note that the action can be localised, in 
particular in one subsystem and even at one single point. 

So knowledge of the deformation 1 U ( D ) )  of the reference system (formed for 
example from the bulk subsystems) and that of the scattering matrices A-‘(MM)A(MD) 
or A’-l(DM)A’-l(MM) enables us to obtain the deformation of the composite system. 

Equation (13b) has already been given previously [ l ]  but used only for a discussion 
of interface reflection and transmission. 

Let us stress here the usefulness of equations (13) not only for the calculation of 
deformations of a composite system but also for the determination of the eigenvectors 
corresponding to the eigenvalues E of the operator h. In this case, iU(D)) is the cor- 
responding eigenvector of the reference system. As the reference system consists of 
independent subsystems and as in equations (14) the action generating the eigenvectors 
can be localised in one single subsystem, it is very convenient to take for lU(D)) only a 
non-zero component for the eigenvector of one single subsystem. Equations (13) will 
nevertheless provide, because of the scattering matrices, the eigenvector I u(D)) cor- 
responding to the chosen eigenvalue E in the whole composite system. 

When using equations (13) to calculate the eigenvectors, one has also to bear in mind 
that for afinite composite system all the eigenvalues E are given by 

det[A(MM)] = det [A’(MM)] = 0. (15) 
So, in order to avoid a divergence in the normalisation factor of the eigenvector, one 
first has to multiply equations (13) by this determinant. Then, for a finite composite 
system, the right space dependence in D of the eigenvectors can be obtained just from 

(u(D)I ‘JC (U(M)1 det [A(MM)] A-’(MM)A(MD) 

lu(D)) cc - A’(DM) det[A’(MM)] A’-’(MM)I U ( M ) ) .  

(16a) 

(16b) 

or 

For a composite system having semi-infinite subsystems, equations (16) can be used 
for the eigenvalues given by equation (15), e.g. for those corresponding to interface 
localised states. However, equations (13) have to be used for the eigenvalues of the 
semi-infinite subsystems which are not given by equation (15). 

Rather than expanding here on these general and abstract results, the reader should 
consult the following paper [4] where the above expressions are used to calculate the 
eigenvectors of several composite systems in a simple analytical model, as it is often much 
easier to understand the general theory after having seen a few explicit applications. 

Let us just stress here that the above expressions are exact and that no expansion is 
needed to calculate the deformations and the eigenvectors, as is often done for perturbed 
infinite systems. In that case, A, = VI = 0 and from equation (8b)  one obtains the well 
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known relation 

lu) = IU) - GV,lu) .  (17) 
Successive iterations of the second term of this equation are then often used to calculate 
lu), starting from the I U) of the unperturbed system. 

3. Continuous composite systems 

The space variables of continuous composite systems are continuous and h ( X )  is in 
general a differential operator rather than a matrix as in § 2. The corresponding response 
function is defined by 

h ( X ) g ( X ,  X ' )  = 16(X - XI) .  (18) 
It has been shown [2] that this response function can be calculated for any continuous 

composite system from the following expression: 

g ( D D )  = G ( D D )  - G ( D M ) G - ' ( M M ) G ( M D )  

+ G ( D M ) G  -l ( M M )  g ( M M )  G - l  ( M M )  G ( M D )  (19) 
with the same notation as above, bearing in mind that D is now a continuous space. The 
reference response function G ( D D )  is formed here out of disconnected parts of bulk 
response functions for each subsystem. G ( M M )  is its value in the interface space and 
G - l ( M M )  is defined as the inverse matrix of G ( M M ) ;  this can always be achieved by 
taking a finite number of discrete points in the continuous M space. 

g ( M M )  is in the same manner the inverse matrix of g - ' ( M M ) ,  which can be obtained 
from knowledge of the corresponding entities g;' (MiMi) calculated for the independent 
subsystems with perfectly reflecting surfaces. These entities are also defined as the 
inverse matrices of the g , (MiMi) .  Their calculation is easily achieved once the following 
are known: the bulk response function Go(DiDi)  and the cleavage operator VOi(X)  
creating the independent subsystem i with perfectly reflecting surfaces. Let us recall [2] 
it briefly here. First one has to calculate the operators 

A S i ( X , X ' )  = Voi(X1')Goi(X",X')Ix~,=x X ' , X ' ' E  Di X E  M i  (20) 

A , ( M i M i )  = I + A S i ( M j M i ) .  (21) 

g ; ' ( M i M i )  = A , ( M i M i ) G ~ ' ( M j M i ) .  (22) 

and 

Then 

Finally g ; ' ( M M )  is obtained by superposition of the elements of the g ; ' ( M , M , ) .  In 
what follows, M ,  defines the subinterface space j in the total interface space Mi of 
subsystem i .  With this notation, 

g -1 ( M i j M i t j 8 )  = 0 M i y  Mi (23a) 

g - l ( M , M i ! j , )  = g; ' (M,M, , )  j # j '  (23b) 

g - ' ( M , M , )  = g ; J ( M i , i # M F j , )  M . .  [I M.r. , .  [ I  (23c) 
i' 
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Considering equation (19) again, one sees easily in the same manner as for the 
discrete systems that the deformations lu(D)) of a continuous system are obtained from 
the deformations I U ( D ) )  of the reference system from 

I @ ) )  = lU(D>> - G ( D M ) G - l ( M M ) I W w  

+ G(DM)G-'(MM)g(MM)G-'(MM)I U(M)) .  (24) 
Here also this expression can be used to calculate eigenvectors corresponding to 

given eigenvalues. In fact just the third term of this expression is necessary to obtain the 
unnormalised eigenvectors corresponding to the eigenvalues given by 

det[g(MM)] = 0 (25) 

(26) 

namely 

1 U( D ) )  G( D M )  1 G -' ( M M )  det [g ( M M ) ]  g ( M M ) G  -' ( M M )  1 U ( M ) ) .  

Let us recall [2] that all the eigenvalues of finite systems are given by equation 
(25) and also the eigenvalues of modes localised at interfaces of semi-infinite parts of 
composite systems. 

4. Mixed (discrete-continuous) composite systems 

Calculation of the deformations and of the eigenvectors of mixed (partly discrete and 
partly continuous) composite systems can be done from the same equations (24)  and 
(26) as for continuous composite systems. The only differences [3] are first that the 
reference response function G is now built out of respectively discrete and continuous 
blocks. The g ( M M )  will be still calculated as the inverse of the matrix g-l(MM). The 
elements of this last matrix are obtained with the help of equations (23) for the interfaces 
between continuous subsystems and for the interfaces between continuous and discrete 
subsystems. For the interfaces between discrete subsystems, one has to use the following 
equation [l, 21: 

g-'(MM) = g,'(MM) + V , ( M M )  (27) 

where VI is the corresponding interface coupling as defined by equation (7). 

5. Discussion 

This paper gives a general theory for the calculation of the deformations and the 
eigenvectors of any composite system. This general presentation will be followed by two 
papers [4,5] showing simple specific examples of how to apply the general results given 
here. The first [4] of these papers deals with phonon eigenvectors in a few layered and 
discrete composite materials [6] (semi-infinite crystal, one slab, a double-layer slab and 
one adsorbed slab). It uses as reference the bulk subsystems. The second [5]  of these 
papers uses as reference the response function and the eigenvectors of a single discrete 
slab and calculates the eigenvectors of double- and triple-layer discrete slabs, with 
specific applications for tight-binding electrons and magnons. This paper [5] also contains 
a comparison with an alternative method recently proposed [7] for solving the eigenvalue 
problem of layered composite systems (the so-called recurrent interface rescaling 
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method). This approach [7] does not use the response function but performs a direct 
diagonalisation procedure, because the interface rescaling approach permits us to 
replace the eigenvalue problem of a whole layered composite system by an individual 
constituent subsystem. It is shown [5]  that the three approaches outlined in [4,5,7] are 
equivalent for finite layered composite systems. 

Finally an application of the theory developed in this paper to continuous and mixed 
(partly continuous and discrete) composite systems will be published for a tunnel 
junction made out of two discrete transition metals separated by a vacuum slab. 
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